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The Runge-Kutta method for the numerical solution of Cauchy's problem for a
system of ordinary differential equations has an obvious iterative character.
As demonstrated in this paper, this phenomenon arises from the connection
between the Runge-Kutta method and Picard's iterative method. The estima-
tion of error for the Runge-Kutta method is based on this connection.

1, Let Cauchy's problem be given for a normal system of ordinary differ-
ential equations of the first order
v, (@) =f, (Y, «« o ¥y)s Y, (o) = y,° r=1,...n) 1.1)
Below we use the following notations:
integral form of the problem (1.1)

y(z) =9,° + S LRy @®, ...y, @] d (r=1%...,n (1.2

appruximate solution of Equation (1.2), obtained after & iterations
by Picard's method -

U e @ =9+ Ly @ v A, =10 (13)
approximate s:iution of thes problem (1.1) by the Runge~Kutta method
Y, @) =y"+h ?__‘,1 B ik ; (r=1,...,n) (1.4
Here i—1 i1

ke o= hfp{Zo + 0 b v T X Briy, i o Yn® T D) By i, ik, if (125)
j=1 j=1

h=z—z, @ ,= 0; a, B,._ i, j, k=const (r=1L, ..,n), (=1, ... 39,
Let us prove the theorem about the connection between the Runge-Kutta
method and Picard's method.

Theoren g . The solution of the problem (1.1) by means of the

e-Kutta method (1.4) gives the same solution as that of the problem (1.2)
by gicu-d's method (1.3), if the integrals in (1.3) are successively substi-

tuted by numerical quadratures.
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Proof Let us take ¥ o (2) =9,° for the zero approximation in (1.3)
and decompose the interval of the integration ([x,,x] for every Equation
(1.3) by the same method into g intervals by the points

z°+a,’ih (i=1,2,...,s84+1)
taking a,,,=0 and q,,,.,; =1 . Let us use the approximation formula
xetap j41h
F (z) dx = BhF (x4 4 a,., ) (1.6)
Xetdp th
According to the above presentation we have
Xetap ih
yz,k(xo + a, = ‘.'Il° + S f; [tk; Y1, k-1 (tk)v c ooy Yn, k-1 (tk)] dt, = 1.7)
Xe
i— %o=ap, jeih
=y°+ ) F b Yy, ks -+ o0 Y, ko @1 A= Y g (70 +0, (B) =
i=1 xetap jh
i—1

= y‘° + 2 Br, i1, thl [zo -+ ar’ jhl; Yl. k_ll(.'r. -+ (lr‘ ’h), ey Yn. k-1 (xo -+ a, h)]
i=1

Here Y x (% -+ @, ;b)) 1s the approximate value of
Y.k (@o+ 0, B, r=1,2,.., n;
1=1,2,...,n; k=1,2,...,8 i=1,2,..-,8+1; Yr'o=yr.o=yr°’
with the understanding, that in the case f = 1 the sum 1s empty.
After the remark

Yl,k(z°+alh)=yl,k(zo)=yl,o (l=11 2,.

conmk=0,1,...,38 (1.8)
we prove the valldity of Equation

'Yy g @t B) =Y (20 - a, ) (i — :' 2' o n) 1.9)

12500 N
for ¢ =1,2,...98 -1 .

For the sake of brevity we shall omit inside s the argument of Yy ;
and provide Y with the index ¢ , assuming that simultaneously 1t subs‘;i-

tutes g —1 and g — 2 . Thus the expression Yl ¢ has to be read once as
Y, ,, and secondly as Y, , o - *

Now let us write (1.7) fir x =g —1 and kx =g — 2 consecutively in

steps.

First step i1

Yz, o (e + @, N =y°+ 2 hBr'i,z' i [zo + e, jh; Yl' 61 * * Yn, 0_1]
i=1

Second step i

Yl. s (@ + @, ) =9°+ 2 hg, i1, ih {zo +a, hnt+
. j=1

=1
+k§1 Br, i1, khfl (zy + Qa, kh; Yl, G-g? * * Yn, °_2), ..y yn° <
j—1

+ kgx B,-, i m, whfn (20 @, khi Yl. o2ttty Yn. a-a)}

1.10)
Continuing this writing, we realize that with every step the set of mem-
bers of the innermost sums decreases by one, and also the second index of

Y,,; lowers itself by one. Furthermore, 1,,,., 18 different from 71,,,.,
only with respect to Y 1in the innermost sums,.
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It follows from the above that the innermost sums of the step {=1 have

the form 1
12 Br ok, it o+ 0, (Y o ise iy Yo, o)) =
=1

=8, g bzt BY; o4y, (@0 + G b)Y iy (0 a, A

However, according to {1.8)
Y oi@ota, B =Y,  ; (z+a, b
Now we write (1.3) in the form

i=12,...,s—1

’

(k=1,'2,...,n )

Thus the Theorem (1.9) is proved.
Yy, . (@) = Yr o (zg + e, k) = (r=1,2,...,n) (1.11)
s Xet@y b

=y °+Z S Frltg yy, ooy (8 0 o s Y ooq (8] dt,
i=1 xta, h
After substituting the integral in (1.11) by numerical quadratures along
with (1.6) and (1.7) we obtain

yr'a (I) = Yr;‘ (1‘) = yro + 2 hBr' ‘ifl' [xo + a,., ih;
i=1

(1.12)

s
Yl. s-1 (o + e, M) RS Yn, -1 (%o T a, #D =y + 2 B,.' ik,.'.; (r=1,2,...,n
=1

It is clear, that
k. ;= hf, [xy + o MYy @eta R LY, o (et a, (R)]

(r=12,...,n i=1,2,...,9) (1.13)
or
ko s = bt {@o + o b w® +
i—1
2 Br' 1, 1, jhfl lxo + ar, jh; Yl, -2 (zo + ar, ik)l .. ”Yln. -2 (zo + ar, J'h)]! o« vy yno +
j=1
i1
+ 2 Brin i B+ 0, B Y (5t gy B Vo o (B0 40, )]}
i=1
Since here << i— 1< s—1, we may use the relations (1.9) and write
the expression obtained for &,,, in 'the form
(1.14)

kr. i hfr{zo + @y, i’ +
i—1
+k 2 B,-' i1,h (e + a, ki Y, s—1{%o + a, 5")1 e Y gy (e a, jh)ly---:y,“"f'
=1

FE
+ h J}_]i Br i, ifn [Bo+a, ki Yy o (zota, b .., Y, (% +a B}
or, substituting (1.13) in (1.11:), we obtailn finally i
- —
ke, s = hfp (20 + @, b 91° + Zl T LTI M _21 Br, 4, n, iFn, 1)
(r = 1,:'._. Son i=1,...8) - (1.15)

q.e.d.
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2. Let us pass over to the estimation of error of the approximate solu-
tion of problem (1.2), using Picard‘'s iterative method of substituting inte-
grals by numerical quadratures, As in Section 1 we shall do g 1iterations,
take the vector function v(x) for zero approximation and substitute the
integrals by some numerical quadratures.

The eastimation of error by the Runge~-Kutta method mentioned in Section 1
will be a particular case of the estimation here obtained,

The basic idea of the estimation of error will be obtained from the proof
of Picard's theorem on the existence and uniqueness of the solution of Cau~
chy's problem for a normal system of ordinary differential equations (com=
pare e.g. [1], pp. 9-16). However, in the above mentioned proof there are
introduced from the very beginning rough estimations, in consequence of which
in some cases the error will be overestimated. In our considerations here
the overeatimation is due to the method applied. In practice, for the pur-
pose of simplifying the estimation of error, the estimation in every concrete
case needs only be considered with reference to the required accuracy of the
approximate solution, For instance, in the case of the solutlion of a differ-
ential equation of order n , i1t is important to know and to keep within cer-
tain limits only the zrror of the unknown function, whilc the derivatives of
the solution are not necessary. According to this requirement it will be
necessary to simplify the estimation of error.

The rounding-off errors and the calculations of the right~hand sides of
the system {1.1) will not be considered, since the analysis of their intlu~
ence on the error of the numerical solution has been made in detail in [3].

For the sake of brevity let us use vector notation. Let |v| denote an
n-dimensional vector, the coordinates of which are absolute values of the
coordinates of the vector v . If all coordinates of the vector 4 are
larger than the corresponding coordilnates of the vector % of the same
dimension as g , we will write g > » . 1In vector notation {1.2) and (1.3)
become x

x
y(@) =9+ S fle,y(0lde, Y ) =9+ S flty,_,@Ode 2.9
Xy Xa
Now let us define the domain D by the inequalitiles
TSz 5+ a ly—y°I<b 2.2)

We suppose that in the domaln » the vector function f(x, )} is conti-
nuous and fulfills the Lipschitz condition of the first order the varia-
ble y . Consequently, there exist a vector o and the matrix p with
nonnegative components and with elements such, that in D

lfEnI<e, |f(y—f@d)|<Ply—z| (2.3)
On the interval %o < 2z << Z;+ 8, where & 1s chosen such, that the ine-
qualities 0<b<a, 8 < b 2.4

are simultanecusly satisfied; the error & (%) ={¥(#) — ¥, (z)| can ve
obtained in the following way ([2], p.110); according to the definition of
Picard's iteration we have

x
y (o) = 9y° + S iy, Mde  (=12..) %nE@=vE@ED 235
X,
From this we mas’}et with the help of the second inequality (2.4)

(ac — Zo)i.’l i1 .
Iw@) =y @IS TP max|p@—v@] (=12..) 28
and for k>
1@ ¥y, @I<I%@ =% @D+ ]y, @ —ye @1 +... +

zo‘

k=1 —
s @ — 3 @1< 3 &= pmax |y, (3) ~ () | @7
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Passing to the limit in the last inequality for &k - = , we obtain

s—1

— aipt
& (2) < [P0 Z‘Li—,""’—’i]max FACEICY (2.8)
i=0

Substituting consecutively the integrals in (2.2) by the numerical quad-
rature formulas, we get the solution ¥(x)

The error & (x) = |y, (¥) — Y (2)| of the numerical quadrature formulas
will be assumed as known. Then the error e(z) = |y (2) — Y (z)| will have
the estimation

e (x) < & (2) + & (2) (2.9)
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